NOI 2020 - 美食家
Problem Link: LOJ3339
Solution
Sort the events by time.
Note that
Now that all edge weights are
Each transition takes
Now that we have the binary lift, we can compute
However, this leads to a time
complexity of
To make this faster, we can add new food festivals such that the difference between
consecutive food festivals is a power of two, allowing us to use the previously-computed
Implementation
/**
* @author n685
* @brief
* @date 2024-07-31 11:59:57
*
*
*/
#include <bits/stdc++.h>
#ifdef LOCAL
#include "dd/debug.h"
#else
#define dbg(...) 42
#define dbgP(...) 420
#define dbgRP(...) 420420
void nline() {}
void bar() {}
#endif
template <class T> constexpr T INF = T{};
template <std::floating_point T>
constexpr T INF<T> = std::numeric_limits<T>::infinity();
template <> constexpr int INF<int> = 0x3f3f3f3f; // 1061109567
template <>
constexpr int64_t INF<int64_t> = 0x3f3f3f3f3f3f3f3f; // 4557430888798830399
constexpr int LG = std::bit_width<uint32_t>(1'000'000'000); // 30
template <class T> T &chmax(T &a, const T &b) {
if (a < b) {
a = b;
}
return a;
}
struct Event {
int64_t t;
int x;
int64_t y;
};
int main() {
#ifndef LOCAL
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
std::freopen("delicacy.in", "r", stdin);
std::freopen("delicacy.out", "w", stdout);
#endif
int n, m;
int64_t t;
int k;
std::cin >> n >> m >> t >> k;
std::vector<int64_t> c(5 * n);
for (int i = 0; i < n; ++i) {
std::cin >> c[5 * i];
}
std::array<std::vector<std::vector<int64_t>>, LG> jmp;
jmp.fill(std::vector(5 * n, std::vector(5 * n, -INF<int64_t>)));
for (int i = 0; i < n; ++i) {
for (int j = 1; j <= 4; ++j) {
jmp[0][5 * i + (j - 1)][5 * i + j] = 0;
}
}
n = 5 * n;
for (int i = 0; i < m; ++i) {
int u, v, w;
std::cin >> u >> v >> w;
--u;
--v;
u = 5 * u;
v = 5 * v;
chmax(jmp[0][u + (w - 1)][v], c[v]);
}
std::vector<Event> pe;
pe.emplace_back(0, -1, -1);
int64_t evt = 0;
for (int i = 0; i < k; ++i) {
int64_t tt;
int x;
int64_t y;
std::cin >> tt >> x >> y;
x = 5 * (x - 1);
if (tt != t) {
pe.emplace_back(tt, x, y);
} else {
if (x == 0) {
evt = y;
}
}
}
pe.emplace_back(t, 0, evt);
std::ranges::sort(pe, {}, &Event::t);
std::vector<Event> ev;
ev.emplace_back(0, -1, -1);
for (int i = 1; i < std::ssize(pe); ++i) {
auto [tt, x, y] = pe[i];
int64_t pt = ev.back().t;
for (int j = LG - 1; j >= 0; --j) {
if (tt - pt >= (int64_t{1} << j)) {
ev.emplace_back(pt + (int64_t{1} << j), -1, -1);
pt += int64_t{1} << j;
}
}
ev.back().x = x;
ev.back().y = y;
}
for (int l = 1; l < LG; ++l) {
for (int mid = 0; mid < n; ++mid) {
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
chmax(jmp[l][i][j], jmp[l - 1][i][mid] + jmp[l - 1][mid][j]);
}
}
}
}
std::vector pre(n, -INF<int64_t>);
pre[0] = c[0];
for (int i = 1; i < std::ssize(ev); ++i) {
auto [tt, x, y] = ev[i];
int lg = std::bit_width<uint64_t>(tt - ev[i - 1].t) - 1;
std::vector cur(n, -INF<int64_t>);
for (int ini = 0; ini < n; ++ini) {
for (int dest = 0; dest < n; ++dest) {
chmax(cur[dest], pre[ini] + jmp[lg][ini][dest]);
}
}
if (x != -1) {
cur[x] += y;
}
pre.swap(cur);
}
if (pre[0] <= -INF<int64_t> / 2) {
std::cout << "-1\n";
} else {
std::cout << pre[0] << '\n';
}
}